Quick Start
Get up and running with the Fig1 SDK in under 5 minutes.
Prerequisites
- A Fig1 account (sign up free)
- An API key (get one here)
Step 1: Make Your First Request
Let's send a message to the AI agent:
curl -X POST https://app.fig1.ai/api/sdk/agent/chat \
-H "Content-Type: application/json" \
-H "X-Fig1-API-Key: YOUR_API_KEY" \
-d '{"message": "Hello, what can you help me with?"}'
You'll receive a response like:
{
"success": true,
"data": {
"message": "Hello! I can help you with information about our products...",
"sessionId": "sess_abc123",
"metadata": {
"tokensUsed": 156
}
}
}
Step 2: Continue the Conversation
Use the sessionId to maintain context across messages:
curl -X POST https://app.fig1.ai/api/sdk/agent/chat \
-H "Content-Type: application/json" \
-H "X-Fig1-API-Key: YOUR_API_KEY" \
-d '{
"message": "Tell me more about the first option",
"sessionId": "sess_abc123"
}'
Step 3: Add to Your Application
JavaScript/TypeScript
async function chat(message: string, sessionId?: string) {
const response = await fetch('https://app.fig1.ai/api/sdk/agent/chat', {
method: 'POST',
headers: {
'Content-Type': 'application/json',
'X-Fig1-API-Key': process.env.FIG1_API_KEY!
},
body: JSON.stringify({ message, sessionId })
});
const data = await response.json();
if (!data.success) {
throw new Error(data.error);
}
return data.data;
}
// Usage
const response = await chat('What products do you recommend?');
console.log(response.message);
// Continue conversation
const followUp = await chat('Tell me more', response.sessionId);
Python
import requests
import os
def chat(message: str, session_id: str = None):
response = requests.post(
'https://app.fig1.ai/api/sdk/agent/chat',
headers={
'Content-Type': 'application/json',
'X-Fig1-API-Key': os.environ['FIG1_API_KEY']
},
json={
'message': message,
'sessionId': session_id
}
)
data = response.json()
if not data['success']:
raise Exception(data['error'])
return data['data']
# Usage
response = chat('What products do you recommend?')
print(response['message'])
# Continue conversation
follow_up = chat('Tell me more', response['sessionId'])
Step 4: Use a Persona (Optional)
Personas customize how the AI responds. If you've created personas in the dashboard:
const response = await fetch('https://app.fig1.ai/api/sdk/agent/chat', {
method: 'POST',
headers: {
'Content-Type': 'application/json',
'X-Fig1-API-Key': process.env.FIG1_API_KEY!
},
body: JSON.stringify({
message: 'Help me choose a product',
personaId: 'persona_sales_assistant'
})
});
Step 5: Pass User Preferences (Optional)
Help the AI give personalized responses:
const response = await fetch('https://app.fig1.ai/api/sdk/agent/chat', {
method: 'POST',
headers: {
'Content-Type': 'application/json',
'X-Fig1-API-Key': process.env.FIG1_API_KEY!
},
body: JSON.stringify({
message: 'What do you recommend?',
preferences: {
products: {
likes: ['organic', 'sustainable'],
priceRange: { min: 20, max: 100 }
}
}
})
});
What's Next?
- Agent Chat API — Full API reference
- React Integration — Hooks and components
- Client Actions — Handle navigation and UI triggers
- Webhook Tools — Add custom tools to your agent